
TEMIC

TELEFUNKEN Semiconductors

Silicon Mesa Rectifiers

Features

- Glass passivated junction
- Hermetically sealed package
- Controlled avalanche characteristics
- Low reverse current
- High surge current loading
- Electrically equivalent diodes:
 BYW82 1N5624 BYW83 1N5625
 BYW84 1N5626 BYW85 1N5627

Applications

Rectifier, general purpose

Absolute Maximum Ratings

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Type	Symbol	Value	Unit
Reverse voltage, repetitive peak		BYW82	V _R =V _{RRM}	200	V
reverse voltage		BYW83	V _R =V _{RRM}	400	V
		BYW84	V _R =V _{RRM}	600	V
		BYW85	V _R =V _{RRM}	800	V
		BYW86	V _R =V _{RRM}	1000	V
Peak forward surge current	t _p =10ms		I _{FSM}	100	A
Repetitive peak forward current			I _{FRM}	18	A
Average forward current	T _{amb} ≤ 65°C		I _{FAV}	3	A
Pulse avalanche peak power	t _p =20μs, half sine wave, T _j =175 °C		P_R	1000	W
Max. pulse energy in the avalanche mode, non repetitive (inductive load switch off)	I _{(BR)R} =1A, T _j =175°C		E _R	20	mWs
i ² *t-rating			i ² *t	40	A ² *s
Junction temperature			T _j	175	°C
Storage temperature range			T _{stg}	<i>−</i> 65+175	°C

TELEFUNKEN Semiconductors

Maximum Thermal Resistance

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Junction ambient	l=25mm, T _L =constant	R _{thJA}	30	K/W
on PC board with spacing 37.5 mm		R _{thJA}	70	K/W

Characteristics

 $T_j = 25$ °C

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Forward voltage	$I_F=3A$		V_{F}			1.0	V
Reverse current	V _R =V _{RRM}		I _R		0.1	1	μΑ
	$V_R = V_{RRM}, T_j = 100$ °C		I _R		5	10	μΑ
Breakdown voltage	$I_R=100\mu A, t_p/T=0.01, t_p=0.3ms$		V _(BR)			1600	V
Diode capacitance	V _R =0, f=0.47MHz		C_{D}		65	100	pF
Reverse recovery time	I _F =0.5A, I _R =1A, i _R =0.25A		t _{rr}		2	4	μs
	$ \begin{matrix} I_F = 1A, d_i / d_t = 5A/\mu s, \\ V_R = 50V \end{matrix} $		t _{rr}		3	6	μs
Reverse recovery charge	$I_F=1A$, $d_i/d_t=5A/\mu s$		Q _{rr}		6	10	μC

Typical Characteristics $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

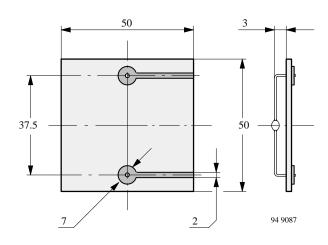
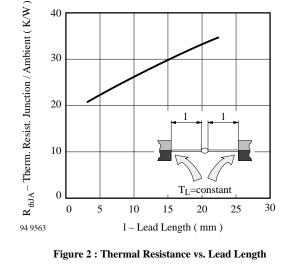



Figure 1 : Epoxy glass hard tissue, board thickness 1.5 mm, $R_{th} J_{\rm A} \leqq 70~{\rm K/W} \label{eq:RthJA}$

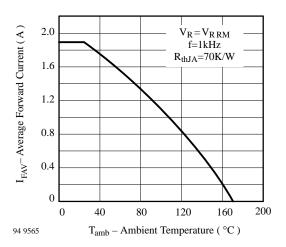


Figure 3: Average Forward Current vs. Ambient Temperature

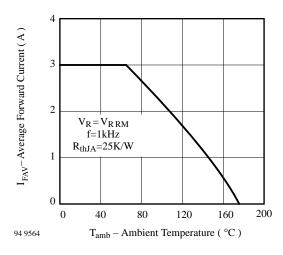


Figure 4: Average Forward Current vs. Ambient Temperature

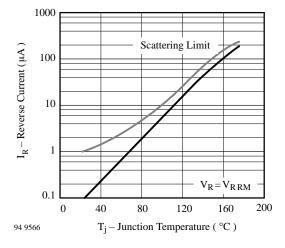


Figure 5: Reverse Current vs. Junction Temperature

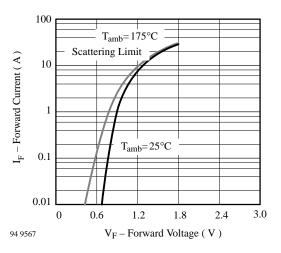


Figure 6: Forward Current vs. Forward Voltage

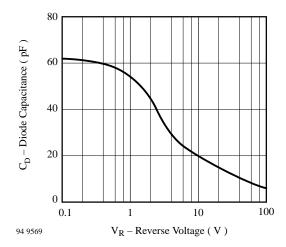


Figure 7 : Diode Capacitance vs. Reverse Voltage

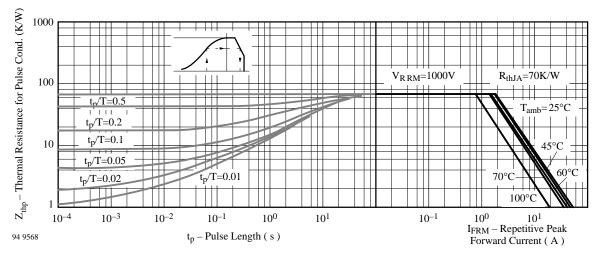
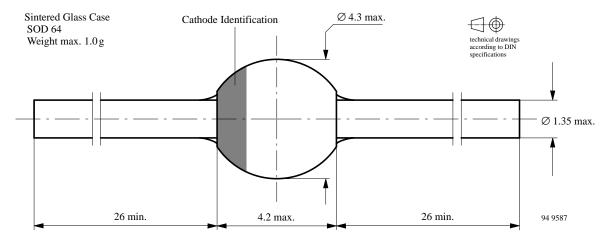



Figure 8: Thermal Response

TEMIC

TELEFUNKEN Semiconductors

Dimensions in mm

Rev. A1: 12.12.1994 5

TELEFUNKEN Semiconductors

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements and
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

Of particular concern is the control or elimination of releases into the atmosphere of those substances which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) will soon severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of any ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA and
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.

We reserve the right to make changes to improve technical design without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423